The Reachability Problem over Infinite Graphs

The Reachability Problem over Infinite Graphs the learning formula


We survey classical and selected recent focus on the reachability problem over finitely presented infinite graphs. The issue has past a century, which is central for automatic verification of infinite-condition systems. Our focus is on graphs which are presented when it comes to word or tree rewriting systems.


Turing MachineRegular LanguageReachability ProblemInfinite GraphGround Tree

These keywords were added by machine and never through the authors. This method is experimental and also the keywords might be updated because the learning formula improves.
This can be a preview of subscription content, sign in to check on access.


Not able to show preview.Download preview PDF.


Altenbernd, J.: On bifix systems and generalizations. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol.5196, pp. 40–51. Springer, Heidelberg (2008)CrossRef
  • Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Application to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol.1243, pp. 135–150. Springer, Heidelberg (1997)CrossRef
  • Büchi, J.R.: Finite Automata, Their Algebras and Grammars. In: Siefkes, D. (erectile dysfunction.). Springer, New You are able to (1989)Google Scholar
  • Caucal, D.: On infinite graphs getting a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol.2420, pp. 165–176. Springer, Heidelberg (2002)CrossRef
  • Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs when it comes to logic and greater-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol.2914, pp. 112–123. Springer, Heidelberg (2003)CrossRef
  • Dauchet, M., Tison, S., Heuillard, T., Lescanne, P.: Decidability from the Confluence of Ground Term Rewriting Systems. In: Proc. LICS 1987, pp. 353–359 (1987)Google Scholar
  • Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient Algorithms for Model Checking Pushdown Systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol.1855, pp. 232–247. Springer, Heidelberg (2000)CrossRef
  • Karhumäki, J., Kunc, M., Okhotin, A.: Communication of Two Stacks and Rewriting. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol.4052, pp. 468–479. Springer, Heidelberg (2006)CrossRef
  • Löding, C., Spelten, A.: Transition Graphs of Rewriting Systems over Unranked Trees. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol.4708, pp. 67–77. Springer, Heidelberg (2007)CrossRef
  • Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, NJ (1967)zbMATH
  • Thomas, W.: A brief summary of infinite automata. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol.2295, pp. 130–144. Springer, Heidelberg (2002)CrossRef
  • Thue, A.: Die Lösung eines Spezialfalles eines allgemeinen logischen Problems, Kra. Videnskabs-Selskabets Skrifter, I. Pad. Nat. Kl. 1910, No. 8, Kristiania (1910) reprinted in: Nagel, T., et. al (eds.) Selected Mathematical Papers of Axel Thue.
  • Resourse:

    5.extra: Walks on infinite graphs